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Introducing quantum space-time into physics by means of the transformation 
language of noncommuting coordinates gives a simple scheme of generalizing 
the tensor analysis. The general covariance principle for the quantum space-time 
case is discussed, within which one can obtain the covariant structure of basic 
tensor quantities and the motion equation for a particle in a gravitational field. 
Definitions of covariant derivatives and curvature are also generalized in the 
given case. It turns out that the covariant structure of the Riemann-Christoffel 
curvature tensor is not preserved in quantum space-time. However, if the cur- 
vature t e n s o r / ~ ( z )  is redetermined up to the value of the L z term, then its 
covariant structure is achieved, and it, in turn, allows us to reconstruct the 
Einstein equation in quantum space-time. 

1. I N T R O D U C T I O N  

In a previous paper  (Namsrai ,  1986) we have shown that due to an 

addi t iona l  force caused by q u a n t u m  space-t ime structure the equivalence 
pr inciple  be tween  gravity and  inert ia  is achieved up to O(L2), where L is 
the fundamen ta l  length. There we appl ied  the equivalence pr inciple  in order  

to in t roduce  the gravi ta t ional  effect into physical  systems in the case of 
q u a n t u m  space-time. Fol lowing this, we wrote down equat ions  in a virtual  

"quas i loca l"  inert ial  system of  coordinates  [i.e., equat ions  of the special 
theory of  relativity such that  d 2 ~ / d ~  "2 = f ~ ( ~ ) ,  where f ~ (~) is an addi t ional  
force p ropor t iona l  to the L 2 term] and  next  carried out  a t rans format ion  
of coordinates  in order  to find cor responding  equat ions  in a q u a n t u m  system 
of  reference. 

While this method  could be used further,  here we employ another  
method [for details, see Weinberg  (1972)], which has the same physical  
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content, but is more elegant in its notation and more convenient to handle. 
This approach is based on the alternative version of the equivalence principle 
known as the principle of  general covariance. It asserts that a physical 
equation is given in an arbitrary gravitational field in the case where the 
following two conditions are fulfilled: 

1. The equation is given in the absence of gravity, i.e., it corresponds 
to the laws of the special theory of relativity [in our case it is slightly 
modified according to Namsrai  (1986)] when its metric tensor g~t3 is equal 
to Minkowski 's ~?~t~ and the affine connection F ~ ( x )  disappears. 

2. The equation is generally covariant, i.e., it preserves its form under 
an arbitrary transformation of coordinates x ~ ~ x'~. 

It should be noted that, as shown below, in quantum space-time one 
can obtain the covariant form of the motion equation for a particle in a 
gravitational force. However, we do not succeed in preserving the covariant 
structure of  the curvature tensor in quantum space-time and it, in turn, 
gives rise to the reformulation of the general covariance principle up to the 
order of  the L 2 term for the Einstein equation case. Moreover, in the 
quantum system of reference 

x ~" --) x ' "  -= z" = x"  + LII~(x)  (1) 

[II~'(x) are arbitrary noncommutat ive functions] tensor algebra is more 
restricted with respect to the usual space-time transformation of e-number 
coordinates. 

This paper  is an immediate continuation of an earlier work (Namsrai ,  
1986) and is devoted to the study of tensor algebra under the transformation 
(1). In Section 2 we present some mathematical  peculiarities of  our scheme 
and define left-hand and right-hand derivatives of  any func t ionf (z )  depend- 
ing on quantum variables z ~'. Section 3 deals with tensor algebra with respect 
to the transformation of quantum coordinates (1). The requirement of  the 
covariant structure of  the motion equation of a particle in the gravitational 
force gives a unique form to the affine connection in quantum space-time. 
This problem and transformation of the affine connection are presented in 
Section 4. In Sections 5 and 6 we generalize the definition of covariant 
derivative and its form along a given curve z"(~).  Sections 7 and 8 are 
devoted to the definition of the curvature tensor and to the reconstruction 
of the Einstein equation in the quantum space-time case, respectively. 

2. THE M A T H E M A T I C A L  PECULIARITY OF THE QUANTUM 
TRANSFORMATION OF COORDINATE SYSTEM 

We suggest that in the microworld space-time R4(z ~) may possess 
some quantum nature and therefore physical quantities depend on noncom- 



tensor Analysis and Curvature in Quantum Space-Time 249 

muting variables z ~'; 

[z", z~]_ r 0 for / z ~ u  

at small distances. Further, it is necessary to pass to a large scale in order 
to construct a physical theory in real nonquantum space-time R4(x~). This 
passage could be carried out by means of  the transformation language of 
coordinate systems x"  and z" if we could construct a transformationn law 
of physical quantities under the transformation x"  ~ z ~ or z" ~ x u. Thus, 
our final aim is to study the residual effect or contribution caused by this 
t ransformation to any physical processes and quantities on a large scale. 

In order to find the transformation law of physical quantities under 
the transformation x"  ~ z ~, we should first give the definition of transforma- 
tion matrices OxP/Oz ~ or Oz~/Ox ~ and their products of  the type 

Ox p Oz" Oz ~ Ox ~ 
(2) 

Oz" OX ~' OX ~ O z " ' ' ' "  

and also differentiation of  function f ( z )  with respect to noncommuting 
variables z". It is easily seen that a definition of the type (2) follows from 
the differentiation rule o f f ( z " ) .  For this purpose, we define left-hand and 
right-hand derivatives of  any function f ( z )  with respect to z. By definition 

~--~f(z) Ox~ -~ "0 "0 oxq 
Oz ~ oxqf (Z) ,  f (Z )o z  . = o x q f ( Z ) o z  ~ (3) 

On the other hand, 

j ~ f ( z )  Oz p Of(z) 0 of(z)  Oz p 
o - ~ f ( z )  

OX q OZ p " Oz,O OX q 

It is natural to assume 

O~-;f(z)=- 0 0 0 ~ z , f ( z )  or ~xq f (Z  ) =-~xqf(Z) 

which, in turn, gives the following equality: 

Ox" Oz A Oz p Ox ~ A 
Oz" Ox ~ ~ or ~t3 (4) Ox ~ Oz o 

To calculate an inverse operation Oxt~/Oz" of Oz~/Ox ~, an explicit depen- 
dence between z" and x"  should be given. For the simpler case, it is just 
(1). Since 

Oz" OH" 
= 6 ~ + L  

Ox" Ox ~ 

the form 

OX'~ OH'~ L 20II~ 0IIr L 30IIp 0H~ 0H= q-" �9 �9 (5) 
Oz ~ = 8 ~ - L ~ x ~  + Ox" Ox ~ Ox" Ox ~ Ox ~ 
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satisfies conditions (4) automatically for any order of L. With this definition, 
the other type of product of transformation matrices takes the form 

Oxx Oz~ OzX Ox~ + L I ~  (6) 
Oz ~ Ox ~ Ox ~ Oz ~ = 8 ~  

where  

OH p 0H 't] 
I ~  : La-x-;' ~ / _ 

Thus, 

OX p ]3q 
(7) 

We see that expressions (3)-(7) differ essentially from the usual transforma- 
tion case (x" ~ x'~), for which 

OX ~ OX r'i OX''i OX 13 

OX'~ Ox '~ OX t30X'~ = 8x 

Notice that definition (4) indicates how to introduce the formal pro- 
cedure of inserting the transformation matrix OzP/ax ~ into any mathematical 
expression. For example, let x'i and (~ be two c-number variables and 
Ox'i/O~ ~ the transformation matrix between them. Then the latter may be 
written in two different forms: 

OxX_OxX O z ~  Oz~ 

o~ ~ az  ~ o~ ~ \ o z  ~ o x " /  o~ ~ 

o .=oz o ox _oz o ox o ox _(ozo ox.]o  . 
O~ ~ O~ t30z  p o x ' o ~  ~ o z  p \ O x ' O z  ~  t~ 

( 8 )  

In accordance with definition (4), only the last form is acceptable. Thus, 
the change of  differentiation variables is carried out by the following rule 
for any function f ( x ( z ) ) :  

o f  _ Oz p Of Of _ Ox" o 

Ox ~ Ox ~ Oz p" Oz p Oz p Ox " f  

where z ~ and x ~" are quantum and c-number variables, respectively. Follow- 
ing this rule, differentiation of the product of functions is defined as follows. 
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Let G(z )= f l ( z ) f 2 ( z ) ;  then 

OG(z) os Ox" O 
az"  - Oz ~" Ox" [f ,(z)f2(z)] 

a x " r a z , ( = )  . _ .  , o Z = ( z ) q  

Now it is necessary to find the commutator  [Ox"/Oz~,fl(z)]_. For this, 
taking into account (1) and (5) and making use of  the so-called "Sylvester 
expansion" for the matrix function (see Frazer et al., 1952) as well as the 
obvious power series expansion 

L ( x + L I I ) = f ~ ( x ) + L I I  ---~y-~ + - - ( l l  11 >~---;~-Z-~. 
ax 2 ! Ox ax 

+ L3/3!<II"II~IIP)ox f f ~ ( x )  
OX ~" OX p 

where 

= & z n ~ , n ~  --- n - .  ( I I ~ ' I I ~ "  " " II~'~  n !  

the sum being taken over all the n! permutations of  the indices, and after 
some calculation, we have 

OX n a L Jro-~-'fl(z)l_ _ 2 r , . ,  . o,, o f l ( x ) { ~ ,  OIIn I In  (9) 

Thus, 

oo( z )  af,(=) . . . . . .  aA(z) Fox" _. , l  aA(z) 

In the last term of this expression we must insert (9) and take Of 2(z)/Ox" 
Of 2(x)/Ox" by our level of  accuracy. As a result we obtain the usual rule of  
differentiation of the product  of  functions up to O(LZ). 

Finally, we notice that in our scheme left-hand and right-hand products 
also give different results. For example, let the rule of  taking the partial 
derivative be (see Section 3.1) 

Oz Iz 
dz ~, = - -  dx ~ 

OX" 
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Then multiply this by a x P / O z  ~ on the left- and right-hand sides, and we 
have, in accordance with (4) and (6), 

Ox p OxP a z  ~ 
d z  ~ d x "  d : ~ +  r 2 I  "~ 

Oz ~ Oz ~ Ox ~ 

and 

OX ~ ~, 07. '~ OX t~ 
- - = d x  ~ x  ~ - - = d x  ~ 

dz~ 'Oz ~" Oz ~ 

respectively. Thus, 

[ d z . ,  O x ~  = f 2 f p n  dx~" 

Oz"  J - - " "  

where we have taken into account 

OH"OH ~ OH~ 
I ~  I ~  

OX ~ OX n OX n OX ~ 

3. TENSOR ANALYSIS 

3.1. Vectors and Tensors 

To construct invariant physical equations with respect to a quantum 
transformation of coordinates we must know how quantities standing in 
equations under this transformation behave. We start from simpler physical 
quantities, such as vectors and tensors. By definition, as in the usual case, 
under the change of variables x~'~ z" contra- and covariant vectors V" 
and Ug transform by the formulas 

V'~(z)" = V "  Oz~ Ox" 
(X)Tx , O.(z) = oz" V (x) (lo) 

respectively. For example, the rule of taking the partial derivative gives 

d z  ~ = ~ x  ~ d x  

so that the differential of coordinates is a contravariant vector. If  ~b is a 
scalar field, the Oqb/Ox ~ is a covariant vector, since 

a4, ax  ~ a r  

Oz ~ Oz ~ Ox" 
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In order to find the transformation law of  high-rank tensors, the definite 
sequence of  their tensor indices should be indicated. For example, if T~ ~ 
is a tensor of the type of U ~ V ' W  A, then its transformation is given by 

f."~(z)- ~ o~" oz ~ 
az  ~ ax  ~ ox  ~ T ~ ( x )  

The requirement of strict arrangement of tensor indices is connected with 
the noncommutability properties of transformation matrices: 

oz. l :rox  l =_fox. : (11) 
ax" '  ax" J_ Laz"'  az" J_ Laz"'  ox" _ - - '~  

The more important tensor is the metric tensor defined by the formula 

aC a~ ~ 
g~, . (x )  = ~l~t3 o x  . a x  ~ 

in an arbitrarily chosen system of reference x ~'. In a quantum system of 
coordinates z" the metric tensor reads 

a~ ~ o C  a C  a~ ~ ox ~ ax ~ 

~,~.(z)  = rh, t3 Oz ~ Oz ~ - 7h~t~x ~ ax  ~ az  ~ az  ~ 

and therefore 

OX p OX '~ 

g ' ~ ' ( z ) = g p ' ~ ( X )  oz~. Oz ~ 

from which we see that ~.~(z) is indeed the covariant tensor. An inverse 
tensor with respect to ~.~(z) is given by the relations 

~ , ' " ( z ) ~ , . p ( z )  = ~ , .p (z )~ ,m' (z )  = 6~. (12a) 

where 

kl OZP Ozke 2 ktz qp 
~,P~'(z) : g  ( X ) ~ x  k Ox' L g ( x ) I k q  (125) 

In accordance with definition (4) in the quantum space-time case the 
, , ,  A 

p 

Kronecker symbol 6 .  is a mixed tensor of the type T~. = U . ( z ) V  ( z ) ,  but 
not V ' ( z )  U.(z); indeed, 

g;  ox" oz ~ 

Oz" Ox p 62 = 8 .  

is invariant. In this connection, it should be noted that the invariant combina- 
tion of  the product of two vectors 1)" and U. is defined as 

I~" (z) U.(z)  = invariant 

But U.(z)l~'"(z) is not invariant, so that 

[ I~'" (z), U. (z)]_ = -L2 I~ ,~  U o ( x  ) V " ( x )  (13) 
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3 . 2 .  T e n s o r  A l g e b r a  

In a quantum system of reference z tensor algebra is more limited with 
respect to the usual space-time transformation. Summation and product 
properties of  the tensor transformation are preserved. Indeed, let A~ and 
B~ be two mixed tensors. Consider their sum T~ -- aA~ + b / ~  for any scalar 
constants a and b. Then T~ (z) is a tensor since 

A ~ _ . L a 2 ~  3X'r 
T~ (z )  - a A ~ ( z ) +  b B ~ ( z )  = a o x  o Oz---~ a x r 1 6 3  -,- O~x ~ ~ z ~ B a ( x )  

OZ ~ OX '~ 
- ~  ~ ~  ~ r s  

where it is assumed that tensor indices for A~ and / ~  are^arranged in a 
definite sequence, namely/z ,  u. Moreover, for example, if A~ and B ~ are 
tensors, the combination T ~ ( z ) =  A ~ ( z ) B P ( z )  is also a tensor, i.e., 

i '~o(~) =_ A ~ ( ~ ) ~ O ( z )  o ~  ox ~ ~ o~ ~ 
- Ox ~ -~ z ~A*(X)~x  ~B '~(x )  

_ Oz" Ox* Oz ~ T~r 
Oz ~ Oz ~ Ox ~ 

where a definite sequence of indices tz, v, p is assumed. 
Generally speaking, in the quantum t rans fo rma t ion  case any operations 

of  contraction, lowering, and raising of the index for tensors do not lead 
to new tensors. Here we indicate some specific possibilities. 

A 

1. Let T"~~ be a tensor with definite arranged indices/xpo-v and if 
we obtain a tensor by means of the contraction operation of indices o- and 
p, then T~P~ T~ ~ is also a tensor; indeed, 

i ' "~ ( z )  =- ~ ( z )  o~" o~ ~ o~ ~ ox ~ 
ax ~ c~x" 3x ~ 8z  ~ T~'~'(x) 

_Oz~ Oz~ ~ x  Oz" OZ~T~,7 ( 1 4 )  

Ox ~ Ox,~ T~ Ox ~' Ox" 

2. The following two types of  lowering and raising indices of  a tensor 
preserve the tensor structure in the case of  quantum space-time transfor- 
mation: 

S ~ . ( z )  = 7 r ~ A ( z ) ~ . ( x )  for o'pa or po~ sequences 
(Is) 

= g ' ~ ' ( z ) S ~ ( z )  for/xpo- or/ .~rp sequences 

where 

~ ' ( z )  = g ~ ( x ) ~ 1 7 6  e 
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Then S ~ ( z )  a n d / ~ P ( z )  are tensors. In expressions (14) and (15) we have 
used definition (4). 

3. According to (12a), raising and lowering of both indices for the 
metric tensor ~u~(z) are carried out by the following rules: 

~?~(z)~.~(z)~.~(z) = ~ ( z ) ~ , ~ ( z ) ~ ( z )  = ~ ( x ) ~ 7 .  = ~ ( z )  

and 

A A A u x  ~ 

g"~(z)~," '(z)~, . ,~(z)  = g;~.(z)g~.~(z)g ( z )  = g x ~ ( z ) ~  = ff,;,~(z) 

This specific rule of lowering and raising indices for g ~ ( z )  again gives the 
metric tensor and its inverse, respectively. 

3.3. Tensor Density 

An important example of nontensor values is the determinant of the 
metric tensor 

= - D e t  g ~ ( z )  

The rule of  the metric tensor transformation may be regarded as a matrix 
equation 

a x  p a x  ~ 

~,~(z) =~z~g,~(X)~z~ 

Calculating its determinant, we have 

g = lax/azl2g (16) 

where [ax/az] is the Jacobian of the transformation z" --> x ", i.e., the deter- 
minant of the matrix a x ' / a z ' .  As in the usual case, if we do not take into 
account an additional multiplier caused by the Jacobian, we call a quantity 
of the type of ~ a scalar density in the quantum system of reference z +'. 
Similarly, a value that transforms as a tensor but with additional multipliers 
from the Jacobian is called a tensor density. We call the number of factors 
laz/axl in the determinant the weight of the density. For example, from 
expression (16) it follows that ~ is a density with weight - 2  up to O(L8), since 

lax/azl-- laz/ax1-1 + o(L  ~) 

The latter is easily verified by estimating the determinant of  the equation 

OX~OZ x 

Oz~Ox ,, 6~ + l,zl'~-- -.,,. 
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Any tensor density weight w can be expressed as a usual tensor 
multiplied by the coefficient g-W~2. For example, the tensor density F~ with 
weight w transforms by the rule 

~ ( z ) =  az wo~"ox~ 
ax Ox A ~z ~F~(x )  

Using (16), we find 

^ ^ c3Z ~ ~ 
g W/2F~(z) = ~z~ g W/2F~(x) 

Ox x 

An important  role of  tensor densities is defined by the fundamental  
theorem of  integral calculus, which asserts that under an arbitrary transfor- 
mation of coordinates x ~' --> x ' '  = z" the volume element d4x is replaced by 

d4z = ]dz / dx[ d4 x 

In our case, d 4 z  = d 4 x  [1 + O(L4)], and therefore the product of  d 4 x  on the 
tensor density with the weight - 1 transforms as a usual tensor. In particular, 
f l U 2  d 4 z  ~ gl/2 d 4 x  is an invariant element of  the volume. 

4. M O T I O N  EQ UATION OF THE PARTICLE AND 
T R A N S F O R M A T I O N  OF T H E  AFFINE C O N N E C T I O N  IN 
QUANTUM SPACE-TIME 

4.1. Covariant Structure of  Mot ion  Equation 

In accordance with the "slightly violated principle of  equivalence" 
formulated in Namsrai  (1986), there exists a "freely" falling system of 
reference ~ in which a particle moves along an almost rectilinear trajectory 
given by the equation 

d:~ ~ 1 
- f ~  (~:) (17) 

d'r 2 m 

where f~(~:) and 

&2 = no~ aC ar ~ (18) 

are some averaged "quan tum"  force proportional to the L2-term and the 
proper  time, respectively. ~ is the Minkowski metric. Further, we assume 
that we take a curvilinear quantum system of  reference z ~ connected with 
the usual curvilinear one x z by relation (1). In the usual case, when the 
coordinates ~ of  "freely" falling system of reference are functions of  x ~' 
only, equation (17) is transformed into the well-known form 

d2xa a axe" dx~ 1 f a ( x  ) (19) 
dr 2 I -F~(x)  dr  dr m 
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where the proper time is given by 

o~" o~ ~ 
dr2=g.m(x)  d x " d x  m, g.m(x) = n ~ O x .  Ox m 

and 

Ox a 02~" 
r~.(x) o~" ox"ox" 

(20a) 

(20b) 

Fa~.(z)-  02r Oza (23) 
Oz" Oz ~ O~ ~ 

F.~x) given by (20b) in generalizes the definition of the affine connection 
the usual theory. The "quantum" force in (22) is defined in a natural manner: 

ZA it 0 ,~ Oz 
f A ( z ) = - ~ f  ( ~ ) = ~ x o f ~  

in accordance with definition (10). 

where 

is called the affine connection. Here 

a x  a ,~ - 

f ~ ( x ) = - f ~ f  (~) 

In a quantum system of  reference z ~ the coordinates ~ are functions 
of z ~ and x~; then equation (17) acquires the form 

d2z  t* a~ ~ dz ~* dz ~ a2~ a 1 
- -  ~- . . . .  f ~  (~:) (21)  

dr z Oz ~* dr dr Oz ~Oz ~* m 

where we have used the definition 

d e  ~ d z  '~ o~" 
dr - dr Oz" 

Multiplying equation (21) on the right-hand side by aza/Or ~ and making 
use of (4), we get 

Z v d2zX dz~* dz~f "a ( z ) = l  f a ( z )  (22) 
d'r 2 +-'d'~T d r - ~ "  " m 
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The proper  time (18) may also be expressed in a quantum system of 

instead of 

where 

d r  2 =  O~ �9 ~ 0~ . 
rh~t3 Oz---- ~ a z  Oz----; a z  

Ox" Ox____~ ~ d z  ~ d z  ~ 
= g . ~ ( X ) ~ z  . Oz ~ 

X n 
2 0 m l  x 

+ L g , m ( X ) ~ z ~  I ~  o d x  ~ d z  ~ (24) 

where we have used the following value of the commutator:  

[ d z  ~, o X m / o z ~ ] _  = L 2 1 7 ~  d x  ~ (25) 

and the usual definition (20a) for grim(X). It is easily verified that the last 
term in (24) is equal to zero up to  O(L 3) term. Thus, 

dr  2 = ff~(z)  d z  ~ d z  ~ (26) 

o x "  o x  m o~"  o~ t3 

~ , . . ( z )  = g . . , ( X )  oz , .  ~  ~ - n ~ o z - - ;  oz  ~ (27) 

is the metric tensor in quantum space-time. So, we see that the covariant 
structure of  the proper  time and the metric tensor is preserved in our 
formalism. 

It is interesting to notice that if we use the transformation of the 
differential in the product  form 

d x "  = d z  ~ Ox" or d~ :~ = d z  ~ 0~'~ (28) 
Oz ~ Oz ~ 

d x "  - ax___~" d z  ~ or dr  ~ - 0~---~ d z  ~ 
- O z  ~ - O z  ~ 

Then, according to (1) and (5), expression (24) leads to the identity 

d r  2 = d z  ~ d z  ~ f f ~ ( z )  =- g , m ( x )  d x "  d x  m 

This means that in the specific form of the product (28), the transformation 
(1) does not change the value of the differential 

d x "  ~ d z  ~" Oxn /Oz  ~" = d x "  

for the given concrete form of definition (5). 

reference, 
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4.2. Transformation of the Alfine Connection 

It is well-known that apart from trivial tensor quantities and densities 
in physical laws nontensor values may appear, among which the affine 
connection plays an important role in the gravitational theory. Now we 
separate its nonhomogeneous--non-tensor term. By definition 

p~(~)= 0~c oz ~ o__(o~ ~ o~ ~) oz ~ ox~ 

Oz ~ a z "  o~ ~ az  ~ \Oz  ~" o x " ]  ox  ~ a (  ~" 

ox~( o2,, ~ o c  ox ~ o~e ~ hoz  ~ oxO 

- a z ~ \ a x  ~ az"  ax '~ ~-az - - -2  ax  ~ a x ~ ]  ax  ~ a (  ~' 

Taking into account definition (20b), we find 

O x  ~ O x  ~ Oz  x 0 2 x  p Oz  A 
F~.(z) - F~r ~ - -  - -  (29) 

O z "  Oz  ~ O x  ~ O z "  Oz  ~ OX ~ 

^ A  Here the last term makes F . . ( z )  nontensor value exactly. 
Tensor analysis permits us to establish a simple connection between 

['~..(z) and ~..(z).  Notice that 

- O z *  az"  -~z " ~7"q3 +~zA t~z ~ Off; az ----;~q~'t3] (30) 

Further, making use of the commutator 

aP ' az" J L2I~" a~" 

we have 

o~.(~) a2~ ~ a~ ~ a (  ~ 02~ ~ 2 o. 
oz  ~ - o z  A oz  ~" -~z "'q~'t3 +-Oz" oz  ~ o z . r } ~  + L I ~ . F o . ( x ) g . ~ ( x )  (31) 

On the other hand, multiplying equation (23) by O~t~/Oz ~ from the right-hand 
side and using the rule of multiplication (4), we arrive at the differential 
equation for ~r 

^"  " "~~ - ~ ( 3 2 )  F " A Z )  oz~ az  " az"  

In the next calculation, the value of the commutator 

oc, 0 2 r  0 ~ 
O z "  OZ x OZ J_---L2Tx ~ Ox k O(r (33a) 
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will be needed, an estimation of which was done earlier (Namsrai, 1986), 
where 

~ m  k 0 ~k  
A ~ ~ ( x )  = I ~ ' F ~ .  ( x )  - I . a  F mrs(X) -[- ~X A I ~ .  (33b) 

Finally, making use of (32) and (33) and again taking into account definition 
(27), we get 

Oz A F ~ , ( z ) g o ~ ( z ) + F a ~ ( z ) g o ~ ( z ) + L  g ~ k ( x )  I ~ , ~ F ~ + ~ x ~ I ~ , ~  

(34) 

Add to (34) the analogous relation with rearranged indices/z and h and 
subtract from (34) the analogous relation with rearranged indices p and h. 
As a result, it reduces to the following connection: 

r~ tz)  . ~ ,  -~  (z ) -~Lg~(x)  
2 \ Oz dz  ~ Oz ~' ] 

• (N~.~ + N~.~ - N ~ . )  (35) 

= I.~F~k(x)go~(x)+g~k [ +0-~I.~J I.~Fx.,(x) 

Here we have used definition (12b) and the expressions for the antisymmetric 
parts of F~(z) and g~(z): 

^ p  - -  ^ p  2 6 k  p F ~  F~ = L  I~F~k(x) 

~ o , . ( z ) _ g , , o ( z )  = 2 ,,,,, " L Io~ g, , , , , (x)  

respectively. Relation (35) will be used below in the definition of the 
curvature tensor in quantum space-time. 

Now we give another expression for the nonhomogeneous term in the 
^ 

transformation rule of F~.(z). Differentiate the identity 

Ox o Oz x 

Oz~. Ox p - 6~ 

with respect to z ~, from which it follows immediately that 

02X p OZ x c)X n OX m o Z z  x 

Oz" Oz t~ Ox ~ 3 z "  Oz ~ Ox n Ox ~ 

Therefore, expression (29) may be written in the form 

f ' ~ . ( z )  : ~  ~  ~ r~(~) ox"  ox  m o~z ~ 
Oz ~ Oz ~" Ox ~ Oz ~ Oz ~ Ox" O x "  (36) 
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Now we are able to use the general covariance principle in order to 
prove that a "freely" falling particle satisfies the following equation of 
motion: 

d 2 x  ~ d x  ~ d x  x 1 

d r  2 +F~x(x) d ~  d ~ -  m f " ( x )  (37) 

where the proper time d r  2 is given by the formula 

d r  2 = g .m(X)  d x  ~ d x  ~ (38) 

First notice that equations (37) and (38) are valid in the absence of gravity, 
since for F~x(x) = 0 and g,v = %v 

d 2 x  ~ 1 
= - - f ~ * ( x ) ,  d r  2 = ~,,~ dx'* d x  ~ 

dr'- m 

But this coincides with equations that describe a "free" particle in the 
special theory of relativity modified in accordance with our assumption. 
Further, notice that (37) and (38) are invariant under a quantum transforma- 
tion of coordinates, since 

c l~  '~ d ( a x "  oz.'~ d2x ~ Oz'* clx ~ ax"  o ~  . 

dr  2 ~ \  ~ 7x~ ; - dr  ~ Ox --7~ dr  dr Ox" Ox ~ 

whereas relation (36) leads to 

d z  ~ d z r  d x  ~ d x  ~ Oz" d x "  d x  m 02z ~ 

d r  d r  F ~ ( z )  d r  d r  Ox ~  d r  d r  Ox" Ox m 

where we have used definition (4). Adding these two equations, we find 
that the left part of equation (37) is a vector, i.e., 

d 2 z  ~ d z  ~ d z ~  O z " [ d 2 x  ~ d x "  d x  m ~ q 
a~-2 +7~r~=(z)=ax--vl--L-r~-~ dr ~r~ (39) 

Thus, equation (37) as well as (38) turns out to be exactly covariant in 
quantum space-time. The general covariance principle tells us that relations 
(37) and (38) are valid in arbitrary gravitational fields, since they are indeed 
satisfied in quasilocal inertial systems of references. Moreover, we recall 
the analogous situation, which asserts that relations are valid in all systems 
of references (including quantum ones) if they are valid in any one system. 
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5. COVARIANT DIFFERENTIATION 

Generally speaking, differentiation of a tensor does not lead to a new 
tensor, especially with respect to noncommuting variables. Nevertheless, in 
our scheme there exists a rule that guarantees the conservation of the tensor 
property of  quantities after taking the differentiation operation with respect 
to "quan tum"  variables z ~. This is just the method of generalized covariant 
differentiation for the usual case. Now we turn to the definition of covariant 

~L(z). differentiation by using the affine connection Consider the contra- 
variant vector V~(z) ,  the transformation rule of  which is 

r = O--U V (X) 

Differentiation of  this equality with respect to z A gives 

af"'Xz) V~(x)aX" a2z '~ ox" az '~ aV~(x) 
Oz ;~ Oz;' Ox" ~x ~4 0z x Ox" ax" 

(4O) 

The second term on the right-hand side of  this equation coincides with one 
that would have arisen if the expression 0V" /0x  ~ were a tensor, but the 
first term breaks the tensor character of Os ~. Although O V" /Oz  ;~ is 
not a tensor, by means of it one can construct a tensor. Using equation 
(36), we find 

oz ~ ~  ~ ox ~ az" ax ~ ox m o~z" ] r 
= ax--; v [~z~ a~* ox m rL(x) o z .  az ~ ax ~ ox - - - - ~  .,I 

a x q  aZ t~  p " - n O x P  a2ZP" 

- V (X)o-- J (41) = V (x)0-- ~- 0--~-dF~q(X) Ox" Ox ~ 

where definition (4) has been used. Adding (40) and (41), we see that 
nonhomogeneous terms cancel and the result reads 

~162 ~ ~(z)Px"(z) = ~ ox "~176 ox ~ (42) 

Thus, we arrive at the definition of the covariant derivative in the quantum 
space-time case, 

O9~'(z) F r (43) ~"(z);,- az* 

A 

and equation (42) tells us that V"(z);A is a tensor, since 

f "" ( z ) ; ,  axq az'~ 
Oz A Ox" W'(X),q (44) 



Tensor Analysis and Curvature in Quantum Space-Time 263 

We can also define the covariant derivative of  a covariant vector U . ( z ) .  

Recall the rule of  transformation 

O~(z) = ~ U~(x) 
c3z ~ 

Differentiating this relation with respect to z ~, we get 

aO,,(~) a~x ~ ax ~ a x  s ~us(x)  
- -  - - -  U o ( x ) + 7 ~  - -  (45) 

OZ;' a z  ~' o z  ~ o z  o z  p~ o x  q 

Further, from (29) it follows that 

Oz p ax  ax  ~ azA-] ox" 
r v . ( z ) U . ( z )  ^" = L0z. oz.  oxO+r~ ~ oz" 7x~JTz * U"(x) 

O2xS U s ( x  ) s Ox q Ox" U s ( x  ) (46) 
- a z  ~ az" +rq~(X)o~;  oz ---d 

By subtracting (46) from (45) the nonhomogeneous terms cancel and we 
obtain 

oO (z>    (z>a(z>=Oxooxo[o o(x> ] 
O z "  a z  v o z "  a x  q r;q(X) U,~ (x) (47) 

Thus, we have introduced a definition of the covariant derivative of  the 
covariant vector 

aO.(z) 
- - F.~.(z)/]~ (z) (48) 

Oz ~ 

and expression (47) tells us that U.(z);~ is a tensor, since 

&(z);v oxp o,," 
~ ~ oz,~ U~(x);s 

Extension of the given method to the case of  a general form of tensors 
encounters  some difficulty caused by the noncommuting character of  the 
variables z ~. Here we give a formal procedure o f  taking the covariant 

^ ~ = T 2 . ( z )  = derivative of  simple tensor quantities: T l . ( z )  U . ( z ) W ( z ) ,  ^~ 
A A A 

V ~ ( z ) U . ( z ) ,  T~.~(z) = U ~ ( z ) V ~ ( z ) ,  etc. So, by definition, 

A z D f  ax q u x 
[Tf . (z ) ] ; a  = O-~-[Tl ,~(z) ] ;q 

c?X q ^ ~ ,, ^ 
- ~z* [u.(~);~ V~(z)+ U.(z) V~(~);~] 

az,~ U ~ ( z ) V  (Z),q (49) 

where the symbols [ ] ;q and [ ] ;q mean covariant differentiation with respect 
to variables z z and x a, respectively. Further, define the commutator  



264 Namsrai 

[axq /oz  ~, Or From the definition U~(z) = ( a x V a z  ~') U~(x),  it follows 
immediately that 

~ O,~(z) ax~ ax~ 
~ ~ = U ~ ( x ) ~  o~" 

I/OX'r oxq 2 q'i- ) 
= t- L I ~ ,  

U ' ~ z ~  Oz ~ 

" axq 2 q~- 
= U ~ ( Z ) ~ z ~ + L  I,~,~U~.(x) 

so that 

[axq/az ~, 0,(z)]_ = ~-2,q~.~, U.(x) (50) 

Inserting this commutator into (49), we have 

[ O~ (z) l~(z) ]  ~ = O~ (z),~ l~"(z) + U~(z) V"(z);~ + L 2 I ~  U , ( x )  V~(z)~q 

Recalling the differentiation rule of the product U~,(z)l~'~(z) with respect 
to z ~ 

A A 

0 ^ ^v o U # ^ v  oxqA OVV 
oz,(U,V )= - -va~  +~U,(z)T~x, 

a u . . +  2 q, 
= Oz A U/ , (Z)az~ + L  I a ~ U p ( x )  V~(z )  

and the definitions (43) and (48), we get finally 

A A O A ~ ^ A A 

[ u .  (~) V"(z)]5 = 0-Z-z[ u ,  (z) v~(~)]- r~,(z) U~(z) v~(~) 

+ O~(~)'f (~)~=~(z)+ ~ ~" [ '~ " L Ix~, Up(x)  ~ " x 
Ox q J 

or in compact form 

= - r ~ . ( Z ) T l . ( Z ) +  T , . ( z ) r ~ , ( z )  

+ L  I ,~ .Up(x )  V~(z)~fq Ox q _I (51) 

In this way terms of the type 

~" ~ = r ~ , . ( x ) V " ( x ) + O ( L )  V (z);q af.'"(z) 
Ox q 
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may be expressed to our level of accuracy. An analogous calculation for 
T~.(z) = V"(z)U~(z) gives the following expression: 

fL(z);  
A A A ^ A 

V"(z) G(z ) ]  + G ( z )  

- V~(z)rT.(z)(L.(z)+L211;V~(x) L- U,.(z);q (52) 

where 

aG( ) 
Ox q U~ (Z),q = F~q(X) Us (x)+ O(L) 

Next, finding the commutator [ f'~ (z), P~.(z)]_ (an analogous commutator 
will be given below), one can express this equality through the value Tj . .  

The differentiation rule for T.~(z)= U.(z)V~(z) is useful for defining 
the covariant derivative of  the metric tensor ~. .(z) .  In this case, the 
expression of  the type of (51) and (52) takes the form 

A 

A ~ A A A A T~.~ OT~(z) ~ 
, ~ ~ r~ . ( z )Tx~(z ) -  U, Az)r~(z)V~,(z)  

2 q p  - L  I~F~q(x)T.~(x) (53) 

It is easily seen that if we know the commutator [/~.(z),  PT~(z)]_, then all 
terms of (53) may be expressed through T~.  By using relation (33a), we 
easily calculate this commutator. The result reads 

= . . . . .  [ U~. (z), ~" L [-Ig,,Fa,.(x)+Ag;.,]U.(x) (54) 

where the value of/x ~;.~ is given by (33b). Substituting (54) into (53), we get 

~ ~ F ~ , T . ~ - F ~ T . , - L  T . ~ ( x ) ( A ~ - I , . r ~ )  

- -  1 2 i " r g  p q  2 ,'rq x . . q~vx(x )T~(x)+ L I..r~q(x)T~(x) 
Similarly, the covariant derivative of the metric tensor is given by the formula 

O g / ~ p  l ~ , X  ~ ^ ~  ^ 2 - r x  r n  x 
~,~(z);a = Oz x -lx,~g,.,-Fa,.g~,,~-L g..,(x)[A.~,.-I..~r~.(x)] (55) 

Substituting (34) into (55) and taking into account 

I,~F~m(X) + 0--~ I ,~ = A~.~ - I ~ F ; ~ ( x )  

we obtain the very attractive result 

~.~(z).A = 0  (56) 
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in quantum space-time. It is natural since it disappears in quasilocal inertial 
coordinates (by our terminology), where Fr and Og.,,/Ox ~ become zero 
and the tensor is equal to zero in one system of  reference; it also becomes 
zero in all systems of reference, including the quantum one. 

6. COVARIANT DIFFERENTIATION ALONG THE CURVE 

Consider tensors T( r )  and define them along the curve Z ~ ( r )  in 
quantum space-time. Such types of  tensors are momentum P~(r)  and spin 
S~,(r) of  the individual particle. Of  course, for such tensors it is not possible 
to talk about covariant differentiation over z, but we can define the covariant 
derivative over the invariant quantity z by means of  which the curve is 
parametrized. 

Consider the contravariant vector A~(r )  transforming by the rule 

" a z ~  v 
A " ( r ) = ~ x ~ A  ( , )  (57) 

where the partial derivative Oz'/Ox" is calculated at Z " =  Z~(r ) ,  so that it 
depends on r. Differentiating (57) over r, we obtain two terms, 

dA, (r) oz" d A ' ( r )  + dx~ 02z~" A~(r)  (58) 
dr - O x  ~ dr dr Ox ~Ox x 

Second derivatives oZz"/Ox ~ Ox ;~ are similar to the term that breaks the 
homogeneity of  the transformation rule (36) for the affine connection, so 
that we can define the covariant derivative along the curve Z " ( r )  as follows: 

dz  A ^ 
D r  dr + - - ~ A  (z)F~x(z) (59) 

Then expressions (36), (57), and (58) show that this quantity is a vector, since 

dz ~ z~ b 3 . .  Oz. dA"(r )  dx A 02z ~" a"(r)-~ AS(r) 
Dr Ox ~ d----~ ~ d~ Ox ~ Ox x dr 

• 
k a z  y o z  x o x  o F q S . x ,  o z  v OZ x OX n O X P J  

dA (r) dx ,, Oz" + Aq(r)Fq~(X) 
- -  c 3 X  ~, 

Oz ~" D A " ( z )  

Ox ~ D r  

(60) 

The similarity of  formulas (59) and (43) for the covariant derivative of  the 
vector field is obvious. 
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Analogous considerations allow us to introduce the covariant derivative 
along curve Z ' ( r )  for the covariant vector B . ( r ) :  

^ A A 

D B . ( z )  dB~, (z )  dz~,,;~ ,, 
D r  - dr ~ F~(z)B~(~')  (61) 

Expression (29) permits us to verify easily that the obtained value is indeed 
a vector, 

1)B~,(~-) Ox ~ D B ~  
(62) 

D z  Oz'" D r  

The covariant derivative along the curve Z ~ ( z )  from an arbitrary tensor 
T ( z ) m a y  be defined in the same way up to O(L2). 

Finally, it should be noted that in definitions (43), (48), (55), (59), and 
(61) a strict Order of  multipliers and a definite arrangement of  their tensor 
indices are important  in the sense that any other kind of  expression of  the 
type of the ones obtained breaks the tensor structure. 

7. D E F I N I T I O N  OF T H E  CURVATURE TENSOR IN QUANTUM 
SYSTEM OF REFERENCE 

Now we attempt to construct a tensor from the metric tensor and its 
first and second derivatives in the quantum system of reference. In order 
to do this, we recall the transformation rule of  the affine connection, 

02 ~ ]3 OX A 
rL(x) 

ax ~ ax - a~: ~ 

- o x  ~ \ o x "  7 z " / o ~  ~ o z  ~ 

02Z n OX h [_ o zn  OZ q ^p  ON A 

- o x ~  ~x ~ oz ~ Ox" 0-~rq"(z)az~ 
On the right-hand side of  this relation there is a nonhomogeneity damaging 
the tensor character of  F~.(x)  and therefore we attempt to separate it: 

~ r?Ax) zoz" oz" ozq^  
ox ~ ox"  ox ~ ox'* ox  "r-'"-z; ( ) 

(63) 

In order to avoid the left part,  use the noncommutabil i ty of partial deriva- 
tives. Differentiation over x"  gives 

O3 Z ~- 

OX ~ OX '~ OX" 

" Oz 8 ,, ~- 7 A 
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Oz Oz n Oz ~^  ] O z  a ^ ,  
- o T  r L ( x )  ox ~ o x .  r ~ ( z ) j  o-ur~,(z)  

Oz~ [ o z a  Ozn Oze ^a ] 

ox~ Lo--~ r:~ o x  ~ a-T;r~(z)J 
'r A" ^ , r  ^ , ~  ~ __az oF~(x)  az ~ Oz a O z ' O F ~ o ( z )  

x F ~ o ~ Z J + o x ~  Ox,~ ox  ~ ox  ~ ox  ~ Oz '7 

Making use of the identity 

oz ~ ozOp;~(z) = oz" o z~^  
ax" ax" - a x  ~ ax "F~"(z) 

and carrying out some elementary calculations of the type 

Ox '~ Ox ~ Ox ~' 

Oz ~ 02~ ~" Oz" ~-L F~u.(x)lq~, - -  2 q . 6  

ax ~ Ox '~ Ox ~ Oil ~ 

Oz a Oz n Oz e 
+ L F ~ ( X ) I q ~ ,  

Ox ~" Ox ,~ Ox ~ 

and collecting similar terms and rearranging some indices, we get 

0 3 Z  ~" 

Ox ~" Ox u~ Ox ~ 

oz'[or~o(x) ~ . ] 
-ox- - ;L  ox - ~  ~r . , ( x ) r ,~ (x )  

OZ ~ OZ" OZP Oz" x ^ 
Ox--2 [ax-'-~F:~(X) +ox--TF:. . (x)  +ox---dF~(x)  ] F:.~(z) 

Oz" Oz ~ [ az '_ar~A z ) _  ^. ^. ^~ ^. ~ . 
o x "  ox  ~ o x " L  ~z  ~ r , ~ ( z ) F , , ( z ) - r , , r e ,  + L  r~.~ 

where 

r po-  A -r po-  q T T ~ . .  = I ~ . F . ~ ( x ) F o ~  ( x )  + I q . F , ~ . ( x ) F ~ o ( x )  

(64) 
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arises from the noncommutability property of  the matrix of transformation 
OzP/Ox ~. 

Rearranging indices u and x and subtracting the obtained result from 
(64), we see that all terms involving the product of F(x) and F(z) disappear 
and the following expression remains: 

ox ~ k ~ ox ~ 

^ A  ^ T  ^ A  ^ , r  oz~ oz ~ oz,, or;o(z) otto(z) ,r~o(z)v~,(z)-r~o(z)r~.(z) 
Ox" Ox ~ Ox~L az n oz ~ 

+ L 2 T~,~ - T ,~ , .+ I ~ ' ( O F f - ( x )  -Fm, F~a 

In the second term of this equation the transformation matrices OzO/Ox ~ 
and 8z~/Ox ~ should be rearranged. Next the obtained expression should 
be multiplied by the matrices Ox~/Oz ~, Ox~/Oz o, and Ox~/Oz ~ successively 
from the left-hand side. The result reads 

where 

h X  u ,,,32 "r 
^, Ox ~ Ox" ~ ~ ~ R ~ ( x )  + L2D~q , ( x )  (65) 
rmq"(z) =Oz m Oz q 02 Ox 

orL(x) orL , ~ ~ 

R~..(x)- ox ~ ox  ~ ~ r . ~ ( x ) r . . ( x ) - r ~ ( x ) r ~ . ( x )  

is the usual curvature tensor, and its generalization in the quantum system 
of  reference is 

A T A ,  r 

rmq,(Z) aFq,(Z) OFmq(Z) ^A ^~ ^x ^T ~" - r m q ( z ) r n . ( z )  Oz m Oz" ~-F,q(z)FmA(z) - 

(66) 

and 

[or;.(x) ] ~[or;.~(x) . , ] 
D S q . ( X ) = I f i S k  ~ x  ~ rt~r;. +~'"L o-Z r~(~)rm~(x) 

po-  1 - -  i p o - p l  ] p 7  - -  po-  A z T +[ I I ,  Fmq(X) l~,~l,q3~p I , . qFn~ tx )Fp , ( x )  (67) 

From these expressions, we see that in quantum space-time the tensor 
structure of the curvature is broken, up to the value of the L 2 term. If we 



270 Namsrai 

redefine the curvature by the formula 

A I" A T  
R m q n ( Z  ) = r, .q.(Z) - L2 D~ q . (X )  (68) 

then its tensor structure is achieved, since in this case the tensor transforma- 
tion gives 

A OX ~ OX ~ OX" OZ "~ x 
R,nqn(Z ) =OZ m Oz q Oz n OX ~ R . ~ ( x )  (69) 

A T 
Sometimes it is useful to express Rmq.(Z)  through the second derivative 

of the metric tensor ~. . (z) .  For this purpose we consider its covariant 
ve r s ion /~ . .~  (z) A~ = R~. , , ( z )g~h(z ) .  Taking into account definitions (66) and 
(68) and relation (35), we get 

A ~ A 

R.,.,,x (z )  = R. , . , . (z)g~x (z)  

1 O -~ O~,, o Og,,~, ~P~(z)  ~ ,~, (z)  
2 Oz '~ L \ oz Oz ~ Oz p ] 

1 0 
2 0 x  '~ [gP~(x)(N~~ + N~~ - N ~ ' ~  (x )  

" ] 1 0 -k Og~. ~  ~,~a(z) 
2 0 z  ~" L\  Oz Oz '~ 

+-2 0 ~ [ g " ~ ( x ) ( N " ~  N ~ .  - N.~.) ]g~ (x) 

A A  ^ o -  A ^ 
+ [ r M z ) r . , ( z ) -  * ~ r . ~ ( z ) r . ~ ( z ) ] g ~ ,  (z) 

2 
- L  D . ~ ( x ) g ~ A ( x )  (70) 

in accordance with our level of accuracy. Further, by using the identity 

~,'~(z)~,~(z) = ~ 

one can easily verify that 

ag "~ ~o~, , a,~o-, f f=x(z )= -g  t z ) y - - ~ - L 2 Q ~ , ~  (71) 
Oz ~ dz" 
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where 

loB," \ .qp Og~A (x ) Q~=(g~ g tX)'kq ~-X~ 

After inserting relation (34) into equality (71), the result reads 

Oz" g~;~(z )=-gP~176  

2 po- q m  k -}- O q k  -t- P - L { g q g ( X ) g  ( x ) [ I r  ~x~Ir  Q+;~} 

Moreover, in expression (70) a transformation of the type 

oz '~ L + - ~ g  (z) 

~ o~,~(z) o~, ~+ = a g + ( z )  ~ , . ( z )  
Oz ~ Oz* Oz" Oz ~ 

+LZ['L~;p+L n m  0 70gO+(X) 
I,+'+* o-~ g'.',~ (x) J 

should be carried out, where 

Ogep n~ " "  = Og~t~ "'~ + ~x  ~ I ~  "~ ~ L~,,. o 3x  m I~p + g,~p (x )  N~ .m.  + g,,t3Nm,, w 

(72) 

(73) 

1 o 
N ~ )  

+2 0X ~ 

and N~mp ~ "~ A~,,~p is given by (33b). 
Finally, taking into account relations (71)-(73) and after some elemen- 

tary but tedious calculations, expression (70) takes the form 

R ~ . ~ ( z )  2 \ O z "  Oz ~ Oz* Oz A Oz ~ Oz ~ Oz Oz ~] 

^ t5 ^ ' 0  ~ ~ ^ ~1 ^ 2 1 o- + r ~r.~)g.+(z) + r [D~.x - D ~ .  g~x (x)] (74) 

where D ~ ( x )  is given by the formula (67), and 

1 +k ~" n 1 0 2 g v x  

D ~  (x) = I ~ r  ~ ( x ) r ~ ( x ) g , ~  (x) + 2 I ~  ox" ox m + 
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0 n k  
T..~a = rL(x)g.~(x)[ I"~'2r~m(X) + 0 - ~ I ~ ]  

l crn o" n m  o- r im  + [F.~ ( x ) I t ,  + F , ,~ (x ) I ,~  + F ~ ( x ) I , ~  + N~,~]  
' O X  

-r .~(x)g~ ~ ~ og~(x)+l o (N~ .+N~. -N . .~ )  
m (X) Ikqg  (x)  Ox ~ 2 0 x ~  

I,.W~k(x)g..(x)+g.~(x)[I.~r..(x)+~x~I,~. 1 (75) N~x = ~k ,7 ~m k 0 6k 

8. THE EINSTEIN EQUATION IN QUANTUM SPACE-TIME 

First we note that it is difficult to reconstruct the Einstein equation in 
quantum space-time by using first principles as is done in the usual theory 
of gravity. However, if we use the general covariance principle discussed 
in Section 1, then the corresponding generalization of the Einstein equation 
may be made by redefining the Ricci tensor R,~,~(x), scalar curvature R, 
and the energy-momentum tensor T.~ which enter into the usual Einstein 
equation. Now we go on to the redefinition of these quantities. 

We know that R.~ (x) = R ~  is the Ricci tensor; then, by definition (4), 

Rmq(Z) = R~q.(Z) (76) 

is also a tensor in quantum space-time. We call it the generalized Ricci 
tensor. It is easy to verify that in our case 

/~mq.~ (z) = ~;.q.(z)~.~ (z) 
is also a tensor. Indeed, 

x~_~x~ O x k ~q~ - ~ ~ ~ ~ R~(x)g ,dx)  - -  
Oz m Oz q Oz ~ Ox n Oz x 

Ox~ Ox~ OxV Oxk n 

since Rk~,~(x)  = R ~ , ( x ) g , k ( X )  is a tensor. However, another contraction 
gives a different result: 

kko(z) : ~0.~ (z)~,""(z) 
O X  ~ O X  ~ 

= Oz m Oz q g t3~(x )R ,g~(x )  + LZgmI~R,q~ , . ( x )  (77) 

where R ~  = g ' ~ ( x ) R , ~ ( x )  is the Ricci tensor. 
Further, we notice that scalar curvature in our case is given by the 

formula 

= = R + 2 L  g ( x ) I . a R , ~ ( x )  (78) 
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Now the question arises of how to redefine the energy-momentum tensor 
in a quantum system of reference. We assume that its covariant structure 
is conserved under a "quantum" transformation of coordinates. Thus, 

~" OxP Ox8 Tp~ (x)  ^s TA (z) (79) - -  = T . ~ , ( z )  + T.~(z)  az ~ az ~ 

where 

l ( O x '  Ox ~ Ox p ax~'~ 
T ~ ( z )  = ~ \ ~ z  ~ - - q  T,~(x) 

Oz ~ Oz ~ Oz ~ ] 

is the symmetric part of T~(z)  and is responsible for conservation of matter 
in quantum space-time. Its antisymmetric part 

= ~L I . ~ ( x )  Top(x) 

may give rise to the generation and disappearance of matter from and into 
vacuum states. This is the problem of the quantum theory of gravity, 
discussion of which is beyond the scope of this paper. Thus, we suggest 
that in quantum space-time the Einstein equation takes the form 

/~..(z) - �89 = -8  ~'OT~.(z) (80) 

in accordance with our assumption. Here the q u a n t i t i e s / ~ ( z ) ,  ~ ( z ) , / ~ ,  
and T~,~(z) are given by formulas (76), (27), (78), and (79), respectively. 
The solution of equation (80) is not known and needs deeper study in this 
direction and another fundamental physical principle. 
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